长葛锂电池充电管理芯片作用原理
锂电池是一种高能密度的电化学电池,广泛应用于移动设备、笔记本电脑、电动汽车等领域。而锂电充电芯片则是锂电池充电过程中必不可少的一个元件,主要承担着充电管理、保护电池、提高充电效率等作用。
PCB设计中消除电源噪声的方法有如下几种。注意板上通孔:通孔使得电源层上需要刻蚀开口以留出空间给通孔通过。而如果电源层开口过大,势必影响信号回路,信号被迫绕开,回路面积增大,噪声加大。同时如果一些信号线都集中在开口附近,共用这一段回路,公共阻抗将引发串扰。连接线需要多的地线:每一信号需要有自己的专有的信号回路,而且信号和回路的环路面积尽可能小,也就是说信号与回路要并行。模拟与数字电源的电源要分开:高频器件一般对数字噪音敏感,所以两者要分开,在电源的入口处接在一起,若信号要跨越模拟和数字两部分的话,可以在信号跨越处放置一条回路以减小环路面积。用于信号回路的数模间的跨越。
长葛锂电池充电管理芯片作用原理
电源完整性设计是一件十分复杂的事情,但是如何近年控制电源系统(电源和地平面)之间阻抗是设计的关键。理论上讲,电源系统间的阻抗越低越好,阻抗越低,噪声幅度越小,电压损耗越小。实际设计中我们可以通过规定most大的电压和电源变化范围来确定我们希望达到的目标阻抗,然后,通过调整电路中的相关因素使电源系统各部分的阻抗(与频率有关)目标阻抗去逼近。加工层次定义不明确单面板设计在TOP层,如不加说明正反做,也许制出来板子装上器件而不好焊接。
长葛锂电池充电管理芯片作用原理
过充电维护锂离子电池要求的充电方法为恒流/恒压,在充电初期,为恒流充电,跟着充电进程,电压会上升到4.2V(依据正材料不同,有的电池要求恒压值为4.1V),转为恒压充电,直至电流越来越小。电池在被充电进程中,假如充电器电路失去操控,会使电池电压超越4.2V后继续恒流充电,此刻电池电压仍会继续上升,当电池电压被充电至超越4.3V时,电池的化学副反响将加重,会导致电池损坏或呈现问题。在带有维护电路的电池中,当操控IC检测到电池电压达到4.28V(该值由操控IC决议,不同的IC有不同的值)时,其“CO”脚将由高电压转变为零电压,使V2由导通转为关断,然后切断了充电回路,使充电器无法再对电池进行充电,起到过充电维护效果。而此刻因为V2自带的体二管VD2的存在,电池可以经过该二管对外部负载进行放电。在操控IC检测到电池电压超越4.28V至发出关断V2信号之间,还有一段延不时刻,该延不时刻的长短由C3决议,一般设为1秒左右,以因搅扰而形成误判别。
长葛锂电池充电管理芯片作用原理