新密8.4V锂电充电芯片批发
锂电池保护芯片的作用
锂电池保护芯片工作原理中的主要元器件的介绍:
1、IC:它是保护芯片的核心,首先取样电池电压,然后通过判断发出各种指令。MOS管:它主要起开关作用
2、保护芯片正常工作:保护芯片上MOS管刚开始可能处于关断状态,磷酸铁锂电池接上保护芯片后,必须先触发MOS管,P+与P-端才有输出电压,触发常用方法——用一导线把B-与P-短接。
3、保护芯片过充保护:在P+与P-上接上一高于电池电压的电源,电源的正极接B+、电源的负极接B-,接好电源后,电池开始充电,电流方向如图所示的I1的流向电流从电源正极出发,流经电池、D1、MOS2到电源负极,IC通过电容来取样电池电压的值,当电池电压达到4.25v时,IC发出指令,使引脚CO为低电平,这时电流从电源正极出发,流经电池、D1、到达MOS2时由于MOS2的栅极与CO相连也为低电平,MOS2关断,整个回路被关断,电路起到保护作用。
4、保护芯片过放保护:在P+与P-上接上一合适的负载后,电池开始放电其电流方向如I2,电流从电池的正极经负载、D2、MOS1到电池的负极,(这时MOS2被D2短路);当电池放电到2.5v时IC采样并发出指令,让MOS1截止,回路断开,电池被保护了。
焊膏未彻底凝结时待焊元件移动或许焊料活动当焊料还未彻底凝结时,待焊元件或许焊料发作颤动,较坏的状况是焊点发生裂纹,较好的状况是焊点失去光泽。在焊点构成时焊盘的天然移动,也会引起这个现象。在元件有很多引脚(如连接器)的状况下,焊盘的移动相当大,有或许会导致焊钖撕裂、焊锡浮起或许焊盘的撕裂。通孔铜镀层与环氧基资料的热膨胀系数(CTE)不同,会引起焊盘变化。于是在接触到焊锡波时,焊盘会上升,沿着铜桶的边沿上呈楔形,在液态焊料流进孔中构成焊点的进程中也会呈现这个现象。
新密8.4V锂电充电芯片批发
从规划的角度来看,一个过孔主要由两个部分组成,一是中间的钻孔(drill hole),二是钻孔周围的焊盘区。这两部分的尺度大小决议了过孔的大小。很显然,在高速,高密度的PCB规划时,规划者总是希望过孔越小越好,这样板上能够留有更多的布线空间,此外,过孔越小,其自身的寄生电容也越小,更适合用于高速电路。但孔尺度的减小同时带来了本钱的增加,并且过孔的尺度不或许无限制的减小,它受到钻孔(drill)和电镀(plating)等工艺技能的限制:孔越小,钻孔需花费的时刻越长,也越简单偏离中心方位;且当孔的深度超越钻孔直径的6倍时,就无法确保孔壁能均匀镀铜。比如,现在正常的一块6层PCB板的厚度(通孔深度)为50Mil左右,所以PCB厂家能供给的钻孔直径most小只能达到8Mil。
新密8.4V锂电充电芯片批发
可测试性设计。可测试性设计包含光板测试的可测试性设计、可测试的焊盘、测试点的分布、测试仪器的可测试性设计等内容。光板测试的可测试性设计。光板测试是为了PCB在组装前,所设计的电路没有断路和短路等故障,测试方法有针床测试、光学测试等。光板的可测试性设计应注意三个方面:,PCB上须设置定位孔,定位孔most好不放置在拼板上;第二,确保测试焊盘大,以便测试探针可顺利进行接触检测;第三,定位孔的间隙和边缘间隙应符合规定。
新密8.4V锂电充电芯片批发